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Various cases of the oscillation of cascades with constant circulation 
have been discussed by Sedov [ 1 1 , and synchronous in-phase oscillations 
of the sections in the cascade have been investigated in the works of 
Khaskind [ 3 ] , Sirazetdinov [ 3 1 1 Songen [ 4.5 I ) Chang and Chu [ 6 1 ) 
Nickel [ 7 1, Wcods [ 8 I and Popescu [ 9,lO 1, In some of these works the 
problem has also been examined more broadly. Legendre [ 11 1 1 and Timman 
[ 12 I especially have investigated the case of the out-of-phase oscilla- 
tion of adjacent blades. Sisto [ 13 I studied synchronous oscillations 
with constant phase shift. Meister [ 14,151 I solves the problem of inde- 
pendent oscillation of the sections in the cascade. 

In this paper unsteady flows of an incompressible fluid through a 
cascade whose adjacent sections are oscillating with different frequen- 
cies, phases and amplitudes are investigated by means of the accelera- 
tion potential. Translational and rotational oscillations are examined. 

Added masses and forces which have a circulational nature are found. 

Some well-known exact solutions are obtained as special cases. 

In a number of cases approximations, which are compared with the exact 
expressions, are introduced. 

As the pitch of the cascade increases without limit the formulas ob- 
tained reduce to the well-known solutions for an isolated oscillating 
wing [ 1,16 1, 

1. Statement of the problem. We shall examine the planar flow 
of an ideal incompressible fluid about an aerodynamic cascade with 
oscillating blades. We shall introduce the following supplementary re- 
strictions. 'Ike blades are thin, of small curvature and at a small angle 
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Flow about an aerodynamic cascade 941 

of attack so that they can be replaced by flat plates for the formulation 
of boundary conditions. 'Ihe amplitudes of blade oscillations are small. 

'Ihe equations of motion may be linearized. Ihe solution of the prob- 
lem of the oscillation of sections of small curvature in a cascade can 
be obtained by adding the solution for steady flow about the given 
cascade to the solution for the unsteady flow about a cascade of flat 
plates. 'lhe first problem has a complete solution [l I. Only the unsteady 
flow will be discussed further. 

Far ahead of the cascade the flow is considered to be undisturbed and 
to have a constant prescribed velocity. 

'lhe boundary conditions on the sections are that for the fluid 
particles on them the normal components of velocity and acceleration (the 
latter in the linearized formulation only) are known at each moment of 
time. 

In addition, we shall assume that the Chaplygin-Zhukovskii condition 
must be satisfied at the trailing edges of the oscillating sections. 
Wakes are shed from the trailing edges of the sections in the case of un- 
steady motion according to the theorem of constancy of circulation. In 
passing across the wake there is a jump in velocity, although the pres- 
sure field is continuous. 'Ihe formulation of the Chaplygin-Zhukovskii 
condition in this case is equivalent to requiring continuity of the pres- 
sure function p at the trailing edges of the sections. 

lhe problem consists in determining the velocity and pressure fields 
as well as the unsteady forces and moments acting on the oscillating 
sections. 

We shall introduce the complex acceleration potential 

211 = cp + j$ = f (z) (1.1) 

Here + is the acceleration potential and z = x + iy is the complex 
variable in whose plane lies the cascade. 

It is well known that the acceleration potential is related to the 
variable component of the pressure p by the relation 

(1.2) 

Here p is the density of the fluid. For the complex acceleration we 
have 
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It is obvious that moving upstream from the cascade p + 0 and, con- 
sequently, q5+ 0. On the sections of the cascade the normal acceleration 
component a (let the sections be parallel to the x-axis) will be of 
known magnilude. 

Other properties of the complex acceleration potential depend on the 
conditions of the problem. If, for example, an aerodynamic cascade 
whose sections are performing synchronous in-phase oscillations is being 
considered, the acceleration potential must then be a periodic function 
with period equal to the pitch of the cascade. 

2. Some functions used in the solution of the problem. We 
shall consider the function of the complex variable z and the real 
constant q 

of 
The function F(z, q) has the following properties used in the solution 
the problem: 

1) the function F(z, q) is periodic with period in/q; 

2) the function F(z, q) + z -:q-’ In cash q + . . . as z + ~0; 

3) the function F(z, q)+ \/(z2 -:l) as q + 0; 

4) on the segment y = 0, -: 1 < x < + 1 the function F(z, q) takes the _ 
purely imaginary values 

F (2, q) = i + sin-l Ibia~Jsh<‘nb”v” (2.2) 

On this segment the function F(z, q) can be expanded into a series of 
the form 

F (z, q) = i ; a, (1 - x2)%,2 (2.3) 
?I=1 

'lhe coefficients in this expansion will be. functions of the parameter 
q and can be determined with the help of Fourier series theory. 

If attention is restricted to only the first term in the expansion, 
it is then possible to use the following approximation: 

F (Z, q) = i $- tan-’ sinh q 7/m 

'Ihis approximation will be sufficiently good even for large values of 
q. Ihe derivative of the function F(z, q) is equal to 
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We shall introduce into the discussion the function 
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Ihis function has the following properties: 

1) the function Q(z, q) is periodic with period in/q; 

2) the function az, q> + z -: q-l In cash q + . . . as z-,00; 

3) the relation (P(z +.irr/2q, q) = Hz, q) is valid; 

4) the function @(z, q) + z as q + 0; 

5) on the segment y = 0, -: 1 < x < +.l the function Q(z, q) takes 
real values. 

On this segment the function Q(z, q) can be expanded into a series of 
the form 

(D (s, 4) = 5 b&i? (n == 1.5...) (2.7) 
?I=1 

The coefficients b, depend on the parameter q. The leading terms of 
the series are equal to 

As q decreases the second term of the series decreases very quickly, 
a property which will be exploited in the approximate solutions. 

The derivative of the function @(z, q) is equal to 

(2.9) 

We shall further consider the function 

P (2, q) = In 
sinh 9: + giinh’ 9Z -sinh’9 

sinh 7 

which has the following properties: 

1) the function P(z, q) is periodic with period in/q; 

2) the function P(z, q) + ln(z +.$z* --1) as q-t 0; 

(2.10) 



944 G.S. Samoilovich 

3) on the segment y = 0, - 1 < n < + 1 the function P(x, q) takes 
purely imaginary values. 

The derivative of the function P(z, q) is equal to 

(2.11) 

We will introduce one final function 

Q (z, 4) = 1x1 i fi~~~299z -hh2’ , P (z + in/2q, q)= Q (z, q) (2.12) 

The derivative of the function Q(z, q) is equal to 

(2.13) 

Thus, the periodic functions F(z, q) and P(z, o) have been introduced, 
as well as the functions @(z, q) and Q(z, q) which are obtained from the 
former by a half-period shift. These functions correspond to the complex 
velocity potential for the transverse and circulational flow about a 
cascade of flat plates [l I, 

The behavior of the functions F(z, q) - z and @(z, q) - z for large 
values of the modulus of n corresponds to the behavior of the complex 
potential of a cascade of doublets lying along the y-axis with pitch 
in/q. 

The behavior of the derivatives of the functions P'(z, q) and Q’(z, q) 
at large values of the modulus of I: corresponds to the behavior of the 
complex potential of a cascade of vortices lying along the y-axis with 
the same pitch iv/q. 

3. ‘Ihe complex acceleration potential for a cascade. Let an 
ideal incompressible fluid flow about a straight cascade of oscillating 
flat plates. We shall place the origin of the coordinate system of the 
plane z = x + iy at the center of one of the flat plates, and we shall 
direct the axis of the cascade along the y-axis. We shall take the chord 
of the flat plates equal to b = 2 and the pitch of the cascade equal to 
t. 

We shall use the functions introduced above to represent the complex 
acceleration potential. 

If the sections are oscillating synchronously and in phase, the com- 
plex acceleration potential can then be expressed by the following 
series: 
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w = ; A,, [F (z, (I) - J -/- q-'ln cash s]"+ 
,,=I 

+ iB cash 9 I='(.& 4) - q-' sfnh qp' (z, v)] 
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(3-l) 

or, after simplifying the last term, we obtain 

The usefulness of such a representation is determined from the follow- 
ing considerations. 

1) For q = n/t the complex potential has a period equal to the pitch 
of the cascade it. 

2) For the condition that Im B = 0, 4 = Re w + 0 at infinity upstream 
of the cascade, i.e. the flow there will be undisturbed (p + 0). 

3) At the trailing edges of the sections the Chaplygin-Zhukovskii con- 
dition is satisfied, since the function $ is not discontinuous at z = 
+ 1 f int. 

The constant (with respect to z) coefficients A, and B must be deter- 
mined from the boundary conditions according to the prescribed law of 
variation of velocity and acceleration of the section. The complex 
acceleration is found by differentiating the series (3.1). 

We shall pass on to the consideration of synchronous out-of-phase 
oscillations. For this type of oscillation the acceleration potential 
must have a period equal to double the pitch of the cascade. lhe magni- 
tudes of the normal accelerations and velocities on adjacent blades will 
be equal in modulus and opposite in sign. 

We shall seek a solution for the complex acceleration potential in 
the form of the series 

(11’) - 2 q-’ sinh -& (P’ - or)] (3.3) 

Here, for brevity, the writing of arguments has been omitted, i.e. 

F = F (z, (I, 2). 0, = & (r, q ,I 2), I’ = P (z, q ,‘2), Q = Q(z,q/“) 
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'Ihe usefulness in expressing w by a series of form (3.3) is indicated 
by the following considerations. 

'lhe period of the functions F, a, P and Q which occur in series (3.3) 
is equal to 2inlq. If we take q = n/t, the period of the functions is 
then equal to 2it, i.e. to double the pitch of the cascade. As y varies 
over a half-period, i.e. over the magnitude of the pitch of the cascade 
it, the functions u and a change sign. 

As the pitch of the cascade increases without limit t + =(q + 0) the 
expressions for the complex acceleration potential (3.1) and (3.3) re- 
duce to the series 

+- iB 
n--I 

(3.4) 

4. Determination of the added masses of the oscillating 
sections in an aerodynamic cascade. For the case in which the 

sections in an aerodynamic cascade are oscillating but the cascade is 
not immersed in a flow, only the pressure which corresponds to the 
inertial forces of the fluid surrounding the cascade acts on the sections 
'lhe action of these forces can be accounted for by means of the added 
masses. 

For the case in which flat plates are performing synchronous in-phase 
oscillations and the flow velocity far upstream of the cascade is II= 0, 
the complex acceleration potential can be expressed by series (3.1), 
after setting B = 0 in it: 

w= ifj A,jF(z,g)-z+-qq-lln coshgln (4.1) 
11=1 - 

In order that the period of this function be equal to the period of 
the cascade, it is necessary to set q = r/t. Ihe imaginary unit i is 
supplied in front of the entire series and all the coefficients A, will 
now be real numbers (relative to.i) in view of the symnetry of the 
problem. 

The complex acceleration is expressed by the following series: 

a = i [F’ (z, q) - I] 2 ml, [F (z, q) - .: f q-l In cash q]“-I (4.2) 
11---l 

The coefficients A,, of the series can be found since the law of 
oscillation of the flat plates is known, i.e. the function a 
where r is the time is known. 

Y 
= aY(n, r), 
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We shall consider the determination of the added masses for some 
special cases. 

u) Synchronous in-phase bending oscillations of blades. We shall 
refer to those oscillations in which the sections move in a direction 
perpendicular to the chord as bending oscillations. 

Let the flat plates oscillate according to the harmonic law 

v = vo expjwz 

where v is the velocity of the oscillations, o is the frequency of the 
oscillations, and j is an imaginary unit which does not interact with 
the imaginary unit i. 

'Ike acceleration in the direction of the y-axis is found by differ- 
entiation: 

a!, = jwv0 exp jw~ 

For the special case 
only the first term. 

under consideration, series (4.1) is limited to 

'lhis follows from the fact that the complex acceleration 

a = a, - zn,, = iA [F(z,q)-I] 

with A = j ou,, exp jot meets the boundary conditions on the flat plate 
contour since F'(n, q) takes imaginary values on the flat plate. 

We shall further find the 
pressure distribution on the 
flat plate 

10 

m  
* m,  

05 
p = ,4 pq-’ 

-1 
sin 

l/shh” ‘I -inIls Q” 
cash 4 

The force acting on the flat 
plate is found by integrating p 
over the flat-plate contour. 
Since the force is found to be 
in phase with the acceleration 
it can be replaced by the effect 
sideration an exact solution can 

Fig. 1. 

of an added mass. In the case under con- 
be obtained which is the well-known one 

111 

Am = p yin cash f$ (4.3) 
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We shall also obtain an approximate solution, depending on an approxi- 
mate representation of the function F(z, q) on the segment - 1 < n ,< + 1 
by only one term of the series (2.4). Omitting the elementary integration, 
we shall present the approximate formula for added mass 

As b/t + 0 the approximate solution tends to 

i.e. it coincides with the exact value of the added mass for an isolated 
flat plate. 

A comparison of the exact solution (4.3) (curve 1) and the approximate 
solution (4.4) (curve 2) is given in Fig. 1. 

In the final formulas it has been convenient to abandon the condition 
b = 2 and to take, as has been done both here and later, an arbitrary 
chord b. 

b) Synchronous in-phase torsional oscillations of blades. We shall 
consider the synchronous in-phase harmonic torsional oscillations of flat 
plates about their centers 

‘The acceleration component along the y-axis must be equal to 

(4.6) 

In this case it is necessary to use the series (4.1) to represent the 
acceleration potential and the complex acceleration. In view of the fact 
that the acceleration aY must be an odd function of X, only those terms 
with coefficients A,, having even indices should be retained in the series. 

We shall obtain an approximate solution after using an approximate re- 
presentation of the function F(x, q) on the segment - 1 ,< r < + 1 with 
the help of Expression (2.4). 

In this case the series is limited to only the first term with an even 
index, and it is easy to obtain 

(4.7) 

Ihe value of the acceleration potential of the flat plate is then found 
in the usual way, and after integrating according to the formula 
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Am = - 2 \ pqxdrc (4.8) 
- , ‘.L i 

the value of the generalized added mass of the sections in a cascade is 
found to be 

As b/t + 0 this expression becomes 

(4.9) 

which coincides with the well-known exact solution for an isolated flat 
plate which is performing rotary motions about its center. 

For the rotation of flat plates not about their centers it is possible 
to use (4.31, (4.9) and the principle of superposition. 

We shall pass on to the consideration of synchronous out-of-phase 
oscillations of sections. For this type of oscillation the acceleration 
potential must have a period equal to double the pitch of the cascade. 
The values of the normal accelerations on adjacent blades must be equal 
in modulus and opposite in sign. 

We shall seek a solution for the complex acceleration potential in the 
form of the series (3.3), setting B = 0 in it (for U= 0 the boundary con- 
ditions on the section are satisfied by choosing the coefficients A,). 

In view of the syrnnetry of the problem we shall provide the imaginary 
unit i in front of the entire series; all the A,, will be real (relative 
to i) numbers. 

We then obtain 

W _. i 5 A,,{[Z+, ;) - z $ -$ln cash +I”- 
,I=1 

? 
@(z, ;) - 2 -I-- + 111 cash f  

?I 
I> (4.11) 1 

We shall continue the special cases. 

c) Synchronous out-of-phase bending osci 1 lations. Let adjacent flat 
plates oscillate out of phase: 

u = z',,esp]wr, 2’ = - Z’,,eXp]WT (4.12) 
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Confining ourselves to approximate representation of the functions, 
we shall obtain an approximate solution of the problem for small values 
of q. In this case the coefficient A, in the series (4.11) is defined by 
the following expression: 

A, = jovo esp jar cash (q / 2) 

lhe determination of the acceleration potential and the calculation 
of the added mass is carried out according to the usual formulas. We 
shall present the final expression for the added mass 

(4.‘13) 

As b/t -f 0 we obtain the well-known expression (4.5) for the added 
mass of an isolated flat plate. 

It is obvious that for out-of-phase oscillations the added mass of a 
flat plate in a cascade is larger than the added mass of an isolated 
flat plate. 

d) Synchronous out-of-phase torsional oscillations. Let adjacent flat 
plates rotate out of phase about their centers according to the harmonic 
law 

v = VOX exp jar, v = - voxexp j”T (4.14) 

Using the same dependencies as in the previous paragraph, it is 
possible to obtain the following approximate expression for the general- 
ized added mass: 

Am=* (4 12) msh’ q 12 tan-’ sir&Q 12 ;;b 

(q / 2)” i- ( tatI-’ sinb (I / 2CO&r] !  2)’ ’ ’ = 5 
(4.15) 

Here only one term of the series (4.11) has been used; a more accurate 
solution is easily obtained by taking additional terms into account. 

5. Flow about a cascade of oscillating sections. We shall 
consider the flow of an ideal incompressible fluid about a straight 
cascade (without stagger) of oscillating flat plates. At infinity up- 
stream of the cascade the flow has the velocity II. 

As before, the coefficients A,, are determined according to the pre- 
scribed acceleration ay of the flat plate. ‘Ihe coefficient B, which is 
now not equal to zero, does not enter into these calculations, since the 
expression by which it is multiplied will give only the acceleration com- 
ponent ax. This is obvious from consideration of the expression which re- 
presents the derivative of the last term in (3.2) 
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This expression takes real values (relative to i) on the segment y = 
int, - l<x<+l. 

Ihe coefficient B must be chosen to satisfy the kinematic condition 
on the oscillating contour, where the normal velocity component of the 
fluid particles is determined by the impenetrability condition of the 
contour. 

The expression (5.1) h as an imaginary (relative to i) value on the 
semi-infinite straight lines y = int, x < - 1 and, consequently, it 
affects the acceleration component a and by the same token the velocity 
u of the fluid particles which run fcom infinity to the oscillating 
sections of the cascade. 

The acceleration component of the fluid particles along the y-axis 
can be represented by the sum of the local and convective accelerations. 

Linearizing the equations of motion, we obtain 

a7.' --+ [-!c 
"u = dl 0.1. 

(*;.') 

We shall consider harmonic oscillations and shall express the velocity 
and acceleration functions in time 

Here ay and 
complex values 

In place of 

CI y = au esp jtor, 1.' = 1‘ cs p jw t 

u will be functions of x and y. The function a can have 
(relative to j). 

Y 

(5.2) we finally obtain 

au= jlur -; Uilr,'fJbL (5.3) 

Ihis 
tive to 

where a 

equation can be written more conveniently in the complex (rela- 
i) form 

n = jot + uaciax (5.4) 

and c are the complex acceleration and velocity, respectively. 

Integrating this linear equation under the conditions that v = 0 far 
upstream of the cascade and that v = iv, exp jot on the sections in the 
cascade, we obtain 
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'lhe upper limit of the integral is taken equal to -1, since the chord 
length of the section is b = 2. 

'Ihe quantity B, which has been discussed above, must be determined 
with the help of condition (5.5). 

The parameter k is the Stroubal number. 

'Ihe parameter k can be treated as the ratio of the mean vorticity in 
the wake or/rrU generated per half-cycle of oscillation to the mean 
vorticity at the section r/b (r is the velocity circulation about the 
section created by the oscillation). 

a) Synchronous in-phase bending oscillations of blades. For this 
special case the exact expression for the complex potential can be written 
from (3.1): 

ZL’ = iA [F (z, q) - ~1 + iB [ cash qF’ (z, q) - q-’ sinh qP’ (z, q)] (5.6) 

il = jkUz~0 exp jwt 

Here the quantity A is a real constant (relative to i and z). 

Differentiating this expression, we find the complex acceleration 

u = iA [I;’ (z, q) - I] + iB [ cash qF” (2, q) - q-1 sinh qP” (2, q)l (5.7) 

Substituting a according to (5.6) into (5.5) and carrying out the 
integration of the second term by parts, we obtain 

B = - R (k, q) UOU exp jwv (5.8) 

Here R(k, q) is a function complex in j and equal to 

R(li,q) = 
I + +?kJ, (k, q) 

1 + jkeikJ2 (k, q) 
(5.9) 

Moreover, J, and J, are the improper integrals 

J, (k, q) = 7 ( l/s%!$%p~ -- eq ) e-j”“ds 

1 

(5.11) 

As the pitch of the cascade increases without limit (t + -) q + 0 and 
the integrals (5.10) and (5.11) simplify respectively to the integrals 
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which can be expressed by the Hankel functions [16 1 

J1 (k, 0) = - ~ ,~~) (/i) _ ~ p-j/i 

J2 (Ii, 0) = - $ [H(;?) (k) +- jHh2’ (/i)] _ ;‘i; e-jk 

Substituting (5.13) into (5.9) we are convinced that the function 
R(k, q) in the limiting case of q = 0 transforms into the well-known 
'Iheodorsen function C(k) which plays an important role in investigating 
the oscillations of an isolated section 

ff’;l’ (k) 

11 (x-7 O) = c(4 = ,I(?) (k) 
1 

,_ ;,p (I.) 
1 0 ’ 

We shall pass on to the calculation of the forces 
oscillating section in a cascade. 

which act on an 

The pressure distribution on the section is found by extracting the 

(5.14) 

real (with respect to i) part of (5.6). After substituting the values of 
the functions F(x, q) and P(n, q), we obtain 

(5.15) 

Th e pressures on the upper and lower sides of the section are equal in 
magnitude but opposite in sign. 

'Ihe force acting on the blade is found by integrating (5.15) over the 
blade contour. 

The force obtained from integrating the first term in (5.15) is not 
related to the circulation but is equal to the added mass multiplied by 
the acceleration. The calculation of the added mass for the type of 
oscillation under consideration has already been carried out ((4.3) or 
(4.4)). 

Integrating the second term in (5.15) g ives the force component which 
does depend on the circulation 

(5.16) 
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In the final formula we introduce here, as also earlier, the section 
chord b. As the pitch of the cascade increases without limit (t/b + m) 
Formula (5.1) transforms into the well-known formula for the lift force 
of an isolated oscillating flat plate 

L = - 2npv0UC(k) ejwy 

b) Bending oscillations of blades in a cascade with different fre- 
quencies, phases and amplitudes. We shall consider the problem of flow 
about a cascade whose adjacent sections are oscillating with different 
frequencies and phases, but such that all the odd sections have the fre- 
quency o1 and the even ones have the frequency o2 and the phase shift 8. 
We shall designate the oscillation velocity of the sections by ul for 
the odd sections and by u2 for the even ones. 

lhus, the odd sections, including the one which lies at the origin of 
the coordinate system, oscillate according to the law 

v1 = vol exp iwlt (5.17) 

‘Ihe even sections oscillate also, according to the law 

v2 = vo2 exp i (uJ,~ - 0) (5.18) 

The expression for the complex acceleration potential can be con- 
structed according to the type of (3.3), but the terms with the functions 
F and Cp must be grouped in different series, because adjacent sections 
have different characteristics of the oscillating process. 

We shall consider the problem in approximate formulation and limit 
ourselves to only the first terms in the series. We seek the complex 
potential in the form 

w = iA [F (2, q/2) - 21 + LB [aI (z, q/2) - z] + 

i- iC [ cash q/ 2P’(z, q/2) - 2q-’ sinh q/2P’(z, q/2)] + 

+ iD I cash q/XD’(z, q/2) - 2q-’ sinh q/ 2Q’ (z, q/2)] (5.19) 

Ihis expression can be written as 

w = id [F (z, q/2) - zl + i13 I@ (z, q/2) - zl + 

(5.20) 

Differentiating (5.20) with respect to z, we obtain the complex 
acceleration a. Differentiating (5.17) and (5.18) with respect to r and 
taking into account that 6’u/d.z = 0 on flat plates in the problem under 
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consideration, we obtain the values of the normal accelerations al = 
j oluol exp j o 1 r and a2 = j*02u02 exp jb,r - 0). Equating correspond- 
ing values of the accelerations, we arrive at two equations which relate 
the desired quantities A, B, C and D: 

- 111 = --A + [sech (q/2) - 1lB i- [I -q/2 tanh(q/2)lD 

- 02 = [ sech (412) - 11 ii -B f [I - q!2 tanh (q/2)] C (3.21) 

In the derivation an approximate representation of the functions @(z, 
q/2) and Q’(z, q/2) on the segment - 1 ,( n < + 1 by the first terms of 
the series has been used. 

Two other equations relating the coefficients must be determined such 
that the value of the normal velocities on the flat plates and the condi- 
tion that the flow velocity at infinity upstream of the cascade is equal 
to Il(u = 0) are satisfied. 

Using the boundary conditions for the velocity on the odd sections, 
with the help of the integral (5.5) we find 

(5.22) 

Here J, = J, (k, q/2) and J, = J, (k, q/2) are the integrals (5.10) and 
(5.11) which have been introduced above, and J, = J,(k, q/2) and J, = 
J,(k, q/2) are also functions of k and q which are expressed by the in- 

tegrals 

(5.23) 

(5.24) 

To satisfy the boundary conditions for the velocity on the even sec- 
tions an integral of the type (5.5) along the semi-infinite straight 
line y  = it, - - < n < - 1 must be calculated. Using the periodicity pro- 
perty of the functions F, @, P and Q, we obtain the following condition: 

u~U = - ejklAJ3 - ejkzBJ1 + C (1 + ejksjk,J,) + D (1 + ejkljk2J2) (5.25) 

Solving Equations (5.21)) (5.22) and (5.25)) we find A, B, C and D. 

The pressure-distribution function on the oscillating sections is 
found by extracting the real (with respect to i) part of the complex 
acceleration potential (5.20). W e obtain Expression (5.15), only q/2 must 
be substituted in place of q and C in place of B. 
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In the general case, forces having the frequencies q and o2 act on 
the section. The action of the forces which coincide in phase and fre- 
quency with the accelerations can be replaced by the effect of an added 
mass. 

In addition, forces which coincide in frequency and phase with the 
accelerations of adjacent sections but are not related to the variation 
of the circulation of the section under consideration also act on the 
section. 

In the case for which the oscillation frequencies of adjacent flat 
plates are equal and the phase shift is equal to 0 or R, the action of 
these forces can also be reduced to the effect of an added mass. 'Ihis is 
also possible in the case for which the even (or odd) sections are motion- 
less (q = 0 or y = 0). 

'Ihe added masses are determined by a formula of type (4.4). We shall 
give as an example the formula for the added mass of a flat plate in a 
cascade in which the oscillating and motionless flat plates (U= 0) are 
alternated: 

Am = $ ~tsechp~~2-ii)2 tan-' sinh q/2 (5.26) 

Integrating the second term of (5.15) and substituting the coefficient 
C in place of B, and q/2 in place of q, as had been said, we obtain the 
force component associated with the variation of the circulation 

'Ihis force acts on the odd sections. For calculating the force acting 
on the even sections, C must be replaced by D. 

c) Synchronous in-phase torsional oscillations of blades in a cascade. 
We shall consider the flow about a straight cascade whose blades are per- 
forming torsional oscillations according to the law 

y= y0x exp jwr 

The normal component of the flow velocity on the section depends on 
the instantaneous velocity and the instantaneous position of the flat 
plate 

u = yoiJej~: (1 + jkx) (5.28) 

'Ihe normal component of the flow acceleration on the section is found 
with the help of (5.3) 

%I = jgoU2kejwT (2 + jkx) (5.29) 
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We shall show that even for the solution of the problem of thick 
cascades one can confine oneself to the first two terms with A, in the 
complex acceleration potential 

where A, and B are real numbers. 

lhe complex acceleration is found by differentiating (5.30) with re- 
spect to z 

where wl, wq, 10~ are the corresponding parts of the complex acceleration 
potential (5.30). 

'lhe normal component of the accelerations on the sections is found by 
extracting the imaginary part of Expression (5.31). The third term in 
(5.31) has been found above in (5.1) and will be real for y = 0, - 1 < 
z<+l. 

lhe imaginary part of the first and second terms in (5.31) is easily 
found, using Expressions (2.1), (2.2) and (2.5): 

In the limiting case of a cascade of infinitely large pitch (q = 0) 
the expression in parentheses simplifies to 2x, i.e. it gives the exact 
solution for the problem of an isolated wing. 

It is however easily observed that the function in parentheses is very 
nearly linear, i.e. it practically gives the exact solution even in the 
case of a thick cascade. This is confirmed by the graph presented in 
Fig. 2, where the value of ay2 is plotted as a fraction of its value at 
the edges of the flat plates 

Q(1) = 2(1++ tanh q) 

lhis was shown earlier by applying the approximate dependency (2.4). 

The coefficients A, in the expression for the complex potential are 
then determined according to the known acceleration 

A1 = - 2jyokU2ejor 

(5.33) 
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‘lhe coefficient B in (5.30) must be determined so that the boundary 
conditions for the normal velocity on the flat plates are satisfied. 

Applying Expression (5.5) for the case under consideration and using 
(5.30), (5.31), (2.1) and (5.33), we obtain the value of 

B r - 1,0(/2e.~~). 

1 - /k + 2,kejkJ1 (k, 9) + ‘/2;kR9 (9+tmh9)-‘J, (k 9) 

I + jkejkJz 6.9) 
(5.34) 

Here the functions J,(k, q) and J,(k, q) are expressed by the integrals 

(5.10) and (5.11), and the function J,(k, q) by the integral 

_ .-- 
J, (/i, q) = r [ -li 1n( cash qz + v sinh’ qr - sinh' j) - 2 ]" e-jkXdx (5.35) 

1 

‘Ihe pressure distribution on the oscillating sections is found by ex- 

tracting the real (with respect to i) part of (5.39) 

p = p(il, -~. 2.4,x) -f- sin-' ' 
sinh” 9 *inh’ 9T 

9 cash (I 
+ pBj/z (5.36) 

Ihe integration of the first term of (5.36) on the contour of the flat 
plate gives a force whose action re- 

I duces to the effect of a generalized 
added mass. 

05 

Fig. 2. 

The integration of the second term 
gives the force component which de- 
pends on the circulation 

L=4pB+sinh$ (5.37) 

where B is given by Formula (5.34). 
‘lhe integration of (5.36) in accord- 
ance with Formula (4.8) determines 
the moment which is acting. 

d) Torsional oscillations of blades in a cascade with different fre- 
quencies, phases and amplitudes. We shall consider only that special case 
for which all odd sections oscillate according to the law 

?I = zh x exp I&T (5.38) 

and all even ones according to the law 

y  = yo2x exp j (WIT - 0) (5.39) 

In the solution we shall limit ourselves to only the first terms of 
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the series for the complex acceleration potential 

The normal components of the acceleration of the flow on the flat 

plates must be equal to 

ai/1 - - al + uzcc = jgOlU2k~ejulT (2 + jklz) 

au2 = US + a4z = j~02U2k2ej(w~~-~) (2 + jkzs) (5.41) 

,Differentiating (5.40) with respect to z, we shall find the expression 
for the complex acceleration. Fquating the normal components of the 
acceleration, we shall find equations which relate the coefficients A,, 
B,, C and D (taking the first terms of the series of the approximate re- 
presentation of the functions F, @ and Q’ on the segment - 1 ,( x < + 1): 

- UI = AI + a& + BD, 
- a3 = aA1 + BI + PC, 

( c( _ sech $ -- 1, p = 1 - -$ tanh $j (5.42) 

Two more equations relating the coefficients A,, B,, C and D are found 
from the kinematic conditions, just as was done in part (b) of this 
section. 

The coefficients A, and B, are found directly from the known values 
of a2 and ad 

(5.43) 

6. Calculation of the flow about a skewed cascade of 
oscillating sections. The calculation of the flow about a skewed 
cascade of oscillating sections can be reduced to the calculation of a 
straight one using the method of conformal transformation. 

We shall consider a skewed cascade of flat plates parallel to the 
abscissa axis of the complex plane 6 = [ + iv. The axis of the cascade 
is inclined by an angle /3 to the abscissa axis. 

The conformal transformation of the straight cascade in the plane 
z = x + iy to a skewed one is given by the function 

5 = sill 13: - i cos BF (3: ‘I) (6.1) 
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‘Ihe pitch of the skewed cascade is equal to te iP , where t is the 
pitch of the straight cascade. The critical points, where the derivative 
d[/dz = 0, correspond to the sharp edges of the skewed cascade in the 
z-plane. ‘lhe coordinates of the critical points nl 2 are found with the 
help of (6.1) and (2.1): 

sinh qx,,? = f sin p sinh q (6.2) 

‘Ihe complex acceleration potential 1~ = $+ i$ must be determined in 
the parametric plane z so that: (1) 4 + 0 as x + -: m ; (2) the value of 
the imaginary part of the derivative of the complex potential on the 
sections of the parametric cascade is defined by the condition 

Imdw/dz=-a,dc/dz 

where ay is the normal component of the acceleration of the fluid on the 
sections of the skewed cascade; (3) at the points which correspond to 
the trailing edges of the sections of the skewed cascade in the z-plane 
$+= 0. 

We shall give as an example the complex acceleration potential for 
two special cases. 

a) Synchronous in-phase bending oscillations of blades. ‘Ihe complex 
acceleration potential which satisfies the prescribed requirements has 
the form 

w = Ae-‘fi F (z, q) - z -qq-‘In cash q 
I 

j-i@ I/ 1 + sina p sinh2 q 

F’ (z,q) - q-l sin p sinh q P’(z, q)] (6.3) 

Ihe real (with respect to i and z) constants A and B are determined 
in the same way as before, only it is necessary to take into account that 
the complex acceleration in the c-plane is now equal to a([) = dur/dz : 
dz/d 5. 

b) Synchronous out-of-phase bending oscillations of blades. ‘Ihe com- 
plex acceleration potential in the parametric plane is given by the 
following expression (for the same stipulations as in Section 5): 

w=A IF-@J(cos@- i Sinp cash q/2) + iB(v/i f sin2b sinh2 q/T 

(F’ - w)i- q-‘sin p sinh q (P’ - Q’)] (6.4) 

For brevity in writing, the arguments have been omitted here, i.e. 
F = Hz, q/2), 6, = @(z, q/2), etc. 
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